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ABSTRACT

Spoken Content Retrieval (SCR) using ASR transcripts is in-
creasingly important for multimedia content archives. How-
ever, SCR is often impacted by ASR errors. In recent years
novel neural ranking methods for information retrieval (IR)
have achieved improved search effectiveness over established
methods. In this study, we examine neural ranking methods
in SCR. Specifically we introduce two new neural ranking
methods designed for use with errorful ASR transcripts. In
the first, we train a neural ranking model using both man-
ual transcripts and ASR transcripts or manual transcripts
and artificially created ASR transcripts. In the second, we
use an ASR N-best extension of two existing neural ranking
methods: Deep Relevance Matching Model (DRMM) and
Position-Aware Convolutional Recurrent Matching (PACRR).
We report two sets of SCR experiments which evaluate our
neural ranking methods. In the first, we use ASR transcripts
to retrieve documents from an archive of spoken instruction
videos. In the second, we examine a known-item search on
a collection of user-generated spoken videos. We find that
training the neural ranking model on both ASR and man-
ual transcripts improves Mean Reciprocal Rank (MRR). The
N-best extension of PACRR is particularly effective in both
experiments in comparison to a standard BM25 IR model.

Index Terms— Spoken content retrieval, Neural ranking,
Information Retrieval, ASR N-best

1. INTRODUCTION

The ever growing archives of digital multimedia spoken con-
tent, such as user-generated videos and podcasts, are increas-
ing the importance of effective spoken content retrieval (SCR)
systems. Existing SCR systems generally operate as a simple
combination of content transcription using automatic speech
recognition (ASR) with information retrieval (IR) methods
to return a ranked list of documents potentially relevant to
a given user search query. While ASR has been significantly
improved for well defined tasks including broadcast speech
and audio books [1, 2] other content such as user-generated
content is highly varied and word error rates (WERs) for such
data can often reach 30-40% which can degrade IR effective-
ness [3].

Existing work on SCR has focused on the use of estab-
lished standard IR models such as BM25 [3, 4]. However,
similar to ASR, recent years have seen the introduction of
effective neural methods in IR [5]. Such methods, referred
to as neural rankers, assign a relevance score to a docu-
ment for a given search query. Two neural models which
have shown superior performance to traditional IR models
are a Deep Relevance Matching Model (DRMM) [6] and a
Position-Aware Convolutional Recurrent Relevance Match-
ing (PACRR) model [7].

In this paper, we investigate the use of neural ranking
models for SCR. We propose two approaches to adapting neu-
ral rankers to address the problem of ASR noise in SCR. The
first model examines the use of manual transcripts of spo-
ken content, corresponding ASR transcripts and artificially
created ASR transcripts for training of the neural models.
The second method is an N-best extension of neural mod-
els which uses the N-best output of an ASR system to ad-
dress the problem of correct words missing from a 1-best ASR
transcript. In our invesigation we build DRMM and PACRR
models for spoken video transcripts for the How2 dataset [8].
Using video titles as search queries, we find that the N-best
PACRR model improves mean reciprocal rank (MRR) score
from 43.9% to 51.3% over a BM25 baseline. In a second
experiment for a known item search task on a collection of
user-generated spoken videos using Blip10000 [9], we find
that the N-best PACRR model improves MRR from 39.38%
to 56.02% on a development query set and from 37.23% to
47.08% on a test set over the BM25 baseline. This latter
experiment examines a domain mismatch scenario where the
neural ranking models are trained on How2 and evaluated on
Blip10000 known item search task.

The remainder of the paper is organised as follows. Sec-
tion 2 outlines existing relevant work. Section 3 describes our
proposed approaches to building noise robust neural rankers
for SCR. Section 4 shows experimental results using these
models, followed by conclusions in Section 5.

2. RELATED WORK

As described in Section 1, there is currently much interest
in neural ranking methods in the field of IR [5]. However,
the only previous work that we are aware of applying neural



re-ranking in SCR is a submission to the TREC 2020 Pod-
cast track [10]. This used a passage retrieval model to re-
trieve segments of podcasts with re-ranking using a T5 model.
Other recent work on SCR has focused on learning repre-
sentations from acoustic signals and searching for documents
or spoken terms using this representation (query-by-example)
[11, 12, 13].

N-best re-ranking is a classic approach for improving
WER of ASR transcripts [14]. Our work using N-best hy-
potheses for neural re-ranking is inspired by [15], where
N-best transcripts are used with a spoken language under-
standing system to overcome the errors in 1-best transcripts.
There has been some limited research examining the use of
N-best ASR transcripts using non-neural IR models in SCR,
but these have shown only limited value benefit to SCR ef-
fectiveness, e.g. [16]. We are not aware of any previous
work which makes use of N-best ASR transcripts in neural
re-ranking for SCR.

3. ASR NOISE ROBUST NEURAL RANKING
MODELS FOR SCR

In this section we introduce the DRMM and PACRR neu-
ral ranking models and our proposals for using them in SCR
with noisy ASR transcripts. The DRMM and PACRR mod-
els analyse the interactions between a query-document pair
to produce a relevance score for the document [6, 7]. Sup-
pose a query consists of Q terms with q = wq
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document interactions are represented as a matrix of similar-
ity of each query term against each document term. Typically,
the query terms and document terms are represented as fixed
dimension word embedded vectors [17], and cosine similarity
is used to measure similarity, resulting in a similarity matrix
of size S ∈ [−1, 1]|Q|×|D|. While PACRR directly applies
convolution to the similarity matrix of query and document
terms, DRMM transforms each row of the similarity matrix
corresponding to interactions of one query term against all
document terms into a histogram of cosine similarity values
with b bins. The advantage of DRMM is that variable length
documents can be represented as vectors of the same size,
while PACRR requires padding or cut-off of documents to
prepare similarity matrices of the equal size. Another impor-
tant difference between them is that PACRR can exploit word
order preserved in the similarity matrix unlike DRMM.

To train the neural ranking model, a triplet of a query Q,
a document relevant to Q and a document non-relevant to Q,
(q, d+, d−) is taken as its input [6, 7]. The model is trained to
predict a relevance score 1 for true query-document pairs and
0 for false query-document pairs as follows:

L(q, d+, d−; Θ) = max(0, 1− s(q, d+) + s(q, d−)) (1)

where s(q, d+) and s(q, d−) are relevance scores from posi-
tive and negative query-document pair and Θ is the model pa-

rameter. While the model is not directly optimised to increase
MRR scores, the progress of model training is monitored us-
ing MRR on a separate query-document validation set.

We propose two approaches to building neural ranking
models robust to ASR transcription errors. In our first ap-
proach we examine ASR transcripts, artificially created ASR
transcripts and manual transcripts for d+ and d−. We hypoth-
esise that either ASR transcripts or artificially created ASR
transcripts can enable the neural ranking system to learn error
patterns of ASR transcripts to produce a more robust re-ranker
for SCR with ASR transcripts. Our second approach is an N-
best extension of the neural ranking model. It is known that
re-ranking N-best hypotheses using a strong neural language
model can reduce WERs [14]. This indicates that the best
transcription of a document is not always its first hypothesis.
We hypothesise that using an N-best extended neural ranking
model can determine a more reliable relevance score than a
single 1-best transcript.

3.1. Adding ASR transcripts to manual transcripts

In our first approach we seek to build neural ranking models
robust to ASR noise by using ASR transcripts or ASR tran-
scripts artificially created from manual transcripts. The use
of artificially created ASR transcripts enables us to control
WERs of transcripts, and to generate diverse ASR error pat-
terns than the single output of an ASR system. In Section 4.2
we examine model training on ASR transcripts and manual
transcripts individually, combination of natural and artificial
ASR transcripts with manual transcripts. Combination of two
is achieved by including them in a training corpus indepen-
dently for each document ID. We now explain the creation of
our artificial ASR transcripts.

Suppose we have a query Q and a manual transcript of
a relevant document D for Q, To generate D̃, a corrupted
version of D, we compute a probability of substituting a term
wi for wj from an actual collection of ASR transcripts using

P (wi 7→ wj) =
c(wi 7→ wj)∑K
k=1 c(wi 7→ wk)

where the numerator is the number of times wi is substi-
tuted for wj and the denominator is the total number of wi

substituted for another word. Terms within Q are selected
randomly, with each one having a selection probability pq ,
to construct a subset of the query terms. Further, the terms
within D are chosen randomly with probability pd, with each
selected term being corrupted. One of the three ASR error
types, deletion, insertion or substitution is applied to each se-
lected term with an equal likelihood. Deletion removes the
a selected term from D. A term to insert or substitute for
wj is sampled randomly from the probability distribution of
P (wi 7→ wj). Insertion inserts wj after wi, while substitution
replaces wi with wj .



Fig. 1. Top N-best version of DRMM, Bottom N-best version of PACRR. Grey squares indicate these are learnable paramters of
the model. The crossing of Query and Doc is the interaction of query terms and document terms. SimMat is a similarity matrix
of query terms and document terms.

3.2. N-best extension of DRMM

The upper part of Figure 1 shows our N-best extension of
DRMM. The standard DRMM model takes a single document
D as input along with a query Q to produce a relevance score.
In our N-best configuration, N transcripts for each spoken
document D are used. The core idea of our N-best DRMM
is to apply attention weights to N matching histograms, and
to aggregate them to form a single matching histogram as an
input of a feed-forward network. This enables the ranking
model to produce a relevance score which takes account of all
N hypotheses of document D. The aggregated output of the
feed-forward network is a relevance score from the DRMM.

In the N-best settings, each of the N-best transcripts of
D is transformed into N similarity matrices S1, S2 , ..., SN .
As mentioned earlier, the input of a DRMM is a fixed length
matching histogram. Therefore, each row of the similarity
matrices is transformed into a histogram of b bins. This
produces N matching histograms M1,M2, ...,MN with size
M
|Q|×|b|
i . Since the value of cosine similarity ranges in

[−1, 1], for example, when the number of bins is set to 5,
elements of a similarity matrix will be sorted according to
[1.0, -0.6], (-0.6, -0.2), [-0.2, 0.2), [0.2, 0.6), [0.6, 1.0]. Fol-

lowing [6], a logarithm is applied to each frequency bin of
the matching histogram.

The goal here is to apply attention mechanism and aggre-
gation to N matching histograms and form a single matching
histogram MD in which information from N documents is
gathered. This can be expressed as follows,

aij =
exp(wamij)∑N
i=1 exp(wamij)

(2)

mDj =

N∑
i=1

aijmij (3)

where mij is a vector of the ith document of the jth query’s
matching histogram (jth row of Mi), wa is an attention we-
gith vector, and aij is a weight vector for mij . The aggre-
gated matching histogram of N-best documents MD is input
to a neural network. The application of the gating mecha-
nism is described in the original DRMM paper [6]. Following
[18], however, we use a concatenation of inverse document
frequency (IDF) and word embedding of query term wq

i for
the gating vector. If a feed forward network with Z layers is



applied to the aggregated matching histogram of N-best,

m
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j = mDj (4)
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where m
(z)
j is a hidden representation of the jth row of a

matching histogram after the zth layer, W(z) the weight ma-
trix of the zth layer, b(z) the bias term of the zth layer, gj the
gating weight for a query term j and o is the final relevance
score. The gating weight gj can be computed using the at-
tention mechanism similar to Eq 2, except using a different
weight vector, and mij is replaced for concatenation of IDF
and word embedding of query term j.

3.3. N-best extension of PACRR

The lower part of Figure 1 shows our N-best extension of
PACRR. Similar to N-best DRMM, each of the N-best tran-
scripts is transformed into a similarity matrix S1, S2, ..., SN .
Unlike DRMM, however, PACRR directly takes as input simi-
larity matrices and a length of document is defined as a hyper-
parameter [7]. Therefore, the size of a similarity matrix is
S ∈ [−1, 1]|Q|×|ld|, where ld is the maximum length of doc-
ument set as a hyper-parameter. Padding is applied to docu-
ments below this length and documents exceeding this length
are cut-off to contain ld terms.

The core concept of PACRR is to apply lg − 1 convolu-
tional layers to similarity matrices with kernel sizes of 2 ×
2, 3× 3, ..., lg × lg . For instance, the kernel size of 2× 2 cor-
responds to bi-gram similarity of query terms and document
terms. While vanilla PACRR applies the convolutional lay-
ers to a single similarity matrix of query and document terms,
N-best PACRR applies convolution to N similarity matrices
at one time. This is analogous to image recognition where
an input image typically consists of red, green, blue (RGB)
channels; hence three channels. Instead of three, the number
of input channels of convolutional layers for N-best PACRR
is set to N . This input is formed by stacking N similarity
matrices S1, ..., SN and creating a 3D tensor S. A hyper-
parameter for convolutional layers is the number of filters lf .
This parameter controls the number of output values for each
convolutional operation. The stride size is set to (1, 1), which
proceeds convolutional operations 1 step at a time. To retain
the identical size of output of convolutional layers to that of
the similarity matrices, padding is applied to similarity matri-
ces with the size of kernel size k − 1 leading to a matrix of
size |Q + k − 1| × |ld + k − 1|. The convolutional operation
with the k × k kernel size can be expressed as:

Ck
lf

= Convk(S) (7)

The output of a convolutional layer with the kernel size k is a
tensor of size Q × ld × lf . Note that uni-gram similarity of
query terms and document terms is the original input similar-
ity matrix C1

N = S. The convolutional operations therefore
lead to C1

N , C2
lf
, ..., C

lg
lf

.
The convolutional layers are followed by two max pool-

ing layers. The first retains the most salient values over the
N-best dimension for C1

N and over the filter dimension for
C2

lf
, ..., C

lg
lf

. This produces lg 3D tensors of size Q× ld × 1.
Another hyper-parameter ls is required for the second ls max
pooling layer which retains ls salient values over the query
dimension of each lg-gram tensor, followed by concatenation
of these tensors to form a matrix of the size Q × (lg × ls).
This is an input matrix of the feed-forward network.

Although the original paper and its follow-up work [7,
18] propose to convert the gating vector into gating weights,
and concatenate the gating weights with this input matrix, we
found that it was empirically better to apply the feed-forward
network to the feature after max pooling, to multiply the gat-
ing weights by output of the feed-forward network, and to
aggregate this output for a relevance score. This is essen-
tially how a relevance score is computed in DRMM using the
weights from the gating vector shown in Eq 4-6, except that
the non-linear function used is ReLU instead of the hyper-
bolic tangent as suggested in [7].

4. EXPERIMENTS

4.1. Experimental setup

Training Dataset We use the How2 dataset for development of
our neural ranking systems [8]. The How2 dataset consists of
19,770 instruction videos, manual transcripts and their titles1.
We split the dataset into 14,770 videos for training of the neu-
ral ranking models and 5,000 videos for evaluation. The 5,000
evaluation videos consist of the 391 videos of the official dev
and test sets, and 4,609 videos randomly selected from the re-
maining videos. The video titles and corresponding manual
or ASR transcripts were used as true query-document pairs to
train the model. ASR transcripts of the How2 data were gen-
erated using a hybrid HMM-DNN ASR system trained on 960
hours of LibriSpeech data [19]. The architecture of the ASR
system used 17 time-delayed layers using lattice-free maxi-
mum mutual information [20]. The WER of the ASR How2
transcripts for the whole dataset including train, dev and test
was 31.1%. We generated {5,10,20}-best transcripts for ex-
periments on the N-best neural ranking models. To obtain
a gating vector, we computed IDF of terms from the man-
ual transcripts of training set. Each of the query terms was a
concatenation of its IDF with its pre-trained Glove word em-
bedding with 300 dimensions [17].

Model Architecture The size of histogram bins for DRMM

1Some of the videos may no longer be available on YouTube.



was set to 5, since this was empirically better than 3,10. The
DRMM architecture is as follows: an input layer takes a
matching histogram of 5 dimensions and produces hidden
representation of 30 dimensions, followed by two hidden
layers of size 5 and 1 respectively. These are the same as
those described in the original paper [6]. After each of these
layers, a non-linear hyperbolic tangent function was applied.
For PACRR, the maximum number of document terms ld
was set to 700. The number of filters of the convolutional
layers lf was set to 16. The number of convolutional layers lg
was 3; hence bi-gram convolution and tri-gram convolution.
These hyper-parameters for PACRR were empirically chosen
after testing several values. For a 1-best input document, the
number of salient values to be kept at second max pooling ls
was set to 3, while when an input document was 10-best, this
parameter was set to 5. Empirically, setting ls to 3 10-best
transcripts led to worse results and vice versa. This indi-
cates that N-best transcripts contain more useful information
than 1-best transcripts. ls was set to 5 when using 5-best
transcripts and to 10 when using 20-best transcripts.

Other Hyper-parameters The initial learning rate of the
DRMM was set to 0.001 and that of the PACRR was 0.0005.
These learning rates ensured model learning to converge
within 30 epochs and to produce the optimal results. The
Adagrad optimiser, which adjusts parameter updates given
input, was used following [6]. The mini-batch size was 100
to train a model faster while data can be loaded in a memory.
For each How2 video title (query) of the training data, we
ran BM25 to obtain a ranked list of documents and used this
list to choose 5 negative samples, which could reasonably
be confused with actual correct documents given their titles.
To monitor performance of the neural ranking models, 100
pairs of video titles and their corresponding document were
randomly chosen from 14,770 title-document pairs and kept
for validation. For each validation sample, the model pro-
duced relevance scores for 500 documents from the list of
BM25 outputs, for which we computed mean reciprocal rank
(MRR). We kept the version of the model which produced the
highest MRR score from 30 epochs. When adding artificially
created ASR transcripts to the training data, one of these was
generated using pq = 0.1 and pd = 0.1.

Evaluation on How2 The 5,000 evaluation video titles were
used as queries and the corresponding 5,000 documents
ranked for each query. The 5,000 evaluation documents
were either ASR transcripts or N-best ASR transcripts, man-
ual transcripts were not used for search experiments. BM25
was first applied to rank the documents for each title. The
neural ranking models were used to re-rank the top 1,000
documents returned by BM25. Documents were represented
as {5,10,20}-best ASR transcripts when using the N-best
neural ranking model.

Evaluation on Blip10000 The second experiments were car-
ried out on the Blip10000 dataset of semi-professional user-

Table 1. MRR results for neural re-ranking models using
ASR transcripts and artificially created ASR transcripts.

model train data MRR
BM25 N/A 43.92

DRMM asr 41.3
DRMM manual 42.9
DRMM manual+asr 43.64
DRMM manual+asr artificial 41.52
PACRR asr 47.67∗∗
PACRR manual 46.97∗

PACRR manual+asr 48.33∗∗
PACRR manual+asr artificial 46.56

generated online video content [9]. The goal of this experi-
ment was to evaluate the neural ranking system in a domain-
mismatch scenario for a known item search task. We created
manual transcripts for 670 videos from the dev set (20 hours)
and 566 videos of test set (15 hours) to evaluate the quality of
ASR transcripts. We developed another ASR system on man-
ual transcripts using the How2 dataset and the untranscribed
dev set of Blip10000. The system was trained using a semi-
supervised technique when dealing with the untranscribed dev
set of Blip10000. This system generated ASR transcripts of
WER 26.82% on the dev subset and 39.21% on the test sub-
set. The same system was used to generate ASR transcripts
of the whole Blip10000 corpus. We created 15 known item
queries for dev and 35 queries for test using Amazon Me-
chanical Turk. These 50 videos were selected randomly from
transcribed parts of the dataset. Similar to the first experi-
ments on How2, for each query, the neural ranking models
were used to re-rank top 1,000 videos returned by the BM25
model. For dev queries, 3,061 videos were searched and for
test queries, 3,371 videos were searched.

4.2. Using ASR transcripts for neural ranking model
training

Table 1 shows results of retrieving How2 videos for title
queries. Higher MRR scores indicate that the user are more
likely to find the target document at higher rank (i.e., sooner).
As can be seen in the table, PACRR was more successful in
retrieving documents than the BM25 baseline and DRMM.
The best MRR score observed was MRR 48.33 using PACRR
trained on a combination of manual transcripts and ASR tran-
scripts. None of the DRMM models produced a better MRR
score than BM25. Asterisks (∗) and (∗∗) denote MRR results
which are statistically significantly better than the baseline
with p < 0.05 and p < 0.01 respectively.

Regarding the effectiveness of training a model on man-
ual, ASR, manual and ASR, and manual and artificially cre-
ated ASR transcripts, we can conclude that training a model
on manual and ASR transcripts is the best on How2. Sur-
prisingly, PACRR trained on ASR transcripts produced better



Table 2. MRR results for N-best neural re-ranking models
using ASR transcripts and artificially created ASR transcripts.

model train data MRR
BM25-1best N/A 43.92
BM25-nbest N/A 43.55
DRMM-n10 asr 44.27
DRMM-n10 manual+asr 44.83
DRMM-n10 manual+asr artificial 44.85
PACRR-n10 asr 50.97∗∗
PACRR-n10 manual+asr 51.27∗∗
PACRR-n10 manual+asr artificial 49.61∗∗

DRMM-n5 manual+asr 42.56
DRMM-n20 manual+asr 44.83
PACRR-n5 manual+asr 48.00∗∗

PACRR-n20 manual+asr 50.43∗∗

MRR than PACRR trained on manual transcripts. The rea-
son for this is likely to be that ASR transcripts of the training
set and the evaluation set were created using the same ASR
system. These results indicate that the neural ranking sys-
tems can learn error patterns of ASR transcripts produced by
this system, and effectively apply this knowledge to ranking
documents. The artificially created ASR transcripts were not
found to be effective as ASR transcripts, indicating that these
do not resemble transcripts created by the ASR system.

4.3. N-best extension of DRMM and PACRR

Table 2 summarises MRR results of neural ranking models
trained on N-best transcripts. The result of BM25-nbest was
produced by keeping 1-best transcripts as base transcripts and
adding unique words which are not present in the 1-best tran-
scripts to these base transcripts. As can be seen in Table 2,
the standard BM25-1best was still better than BM25-nbest.
When training an N-best neural ranking system, training can
be done by only using N-best ASR transcripts (asr), using
manual transcripts as 1-best and N−1 ASR transcripts (man-
ual+asr), and using manual transcripts as 1-best and N − 1
artificially created ASR transcripts (manual+asr artificial).

In this experiment, PACRR again achieved better results
than DRMM with 51.27 MRR when the model was trained on
manual transcripts and N−1 ASR transcripts. While DRMM
produced better results than BM25, unlike in Table 1, its re-
sults are still lower than those for PACRR. This may arise
from PACRR exploiting word order in the documents. There
was no difference between N-best DRMM trained on 10-best
and 20-best transcripts, although training on 10-best was bet-
ter using 5-best or 20-best. This indicates that all the informa-
tion useful for improve N-best retrieval effectiveness for the
How2 dataset is contained in the 10-best lists.

Table 3. MRR results for neural ranking models and BM25
on known item queries for Blip10000. The rightmost column
shows relative changes to MRR score of the BM25 baseline.

model train data dev test +/-BM25
BM25 N/A 39.38 37.23 0.0

DRMM manual+asr 22.75 31.97 -10.95
DRMM-n10 manual+asr 21.29 28.73 -13.30

PACRR manual+asr 40.5 36.24 +0.07
PACRR-n10 manual+asr 55.83 46.90 +13.06∗∗

DRMM asr 19.26 27.97 -14.69
DRMM-n10 asr 21.25 29.53 -12.92

PACRR asr 41.07 36.72 +0.59
PACRR-n10 asr 56.02 47.08 +13.25∗∗

4.4. Known item search on Blip10000

Table 3 summarises results for MRR on our known-item
search task for Blip10000 using the neural rankers trained
using the How2 data. Unlike the results in Table 2, the
N-best version of the ASR PACRR is slightly better than
the combined manual and ASR model. This means that
the most effective re-ranker can be trained without use of
manual transcripts. DRMM consistently performed poorly,
with interestingly, the N-best DRMM performing worse than
vanilla DRMM. This could be accounted for by the difference
in the lengths of transcripts between How2 and Blip10000.
The average length of How2 documents was 251.68 words
with standard deviation 109.02, while that of Blip10000 was
1458.46 with standard deviation 2621.16. Since DRMM ex-
ploits frequency of query-document similarities, the varied
document lengths in Blip10000 could have a negative impact
on the model. On the other hand, PACRR was robust to the
varied document lengths observed in Blip10000.

5. CONCLUSION

In this work, we proposed two approaches to the application
of neural ranking models in SCR. The first combines real or
artificial ASR transcripts with manual transcripts to train a
neural ranking system. The second extends a neural ranking
system to make use of N-best ASR transcripts. Our exper-
imental results show that use of both manual and ASR tran-
scripts improves PACRR model. The PACRR model also ben-
efits more from the N-best extension than DRMM. Overall,
our experiments show very good effectiveness for the PACRR
model. Particularly encouraging is the result using only ASR
transcripts, showing that these techniques can be applied for
SCR without the need for large amounts of in domain manu-
ally transcribed content.
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Hermann Ney, “RWTH ASR Systems for LibriSpeech:
Hybrid vs Attention,” in Proceedings of Interspeech,
2019, pp. 231–235.

[3] M. Larson and G. J. F. Jones, “Spoken Content Re-
trieval: A survey of techniques and technologies,” Foun-
dations and Trends in Information Retrieval, vol. 4, no.
4-5, pp. 235–422, 2012.

[4] S. E. Robertson and S. Walker, “Some simple effective
approximations to the 2-poisson model for probabilis-
tic weighted retrieval,” in Proceedings of ACM SIGIR
Conference, 1994, SIGIR ’94, p. 232–241.

[5] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang,
Qingyao Ai, Hamed Zamani, Chen Wu, W. Bruce Croft,
and Xueqi Cheng, “A deep look into neural ranking
models for information retrieval,” Information Process-
ing & Management, vol. 57, no. 6, pp. 102067, 2020.

[6] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce
Croft, “A deep relevance matching model for ad-hoc
retrieval,” in Proceedings of the International on Con-
ference on Information and Knowledge Management.
2016, p. 55–64, Association for Computing Machinery.

[7] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard
de Melo, “PACRR: A position-aware neural IR model
for relevance matching,” in Proceedings of EMNLP.
2017, pp. 1049–1058, Association for Computational
Linguistics.

[8] R. Sanabria, O. Caglayan, S. Palaskar, D. Elliott, L. Bar-
rault, L. Specia, and F. Metze, “How2: a large-scale
dataset for multimodal language understanding,” in Pro-
ceedings of the Workshop on Visually Grounded Interac-
tion and Language (ViGIL). NeurIPS, 2018.

[9] Sebastian Schmiedeke, Peng Xu, Isabelle Ferrané,
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